Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere

Identifieur interne : 000213 ( Main/Exploration ); précédent : 000212; suivant : 000214

Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere

Auteurs : P. R. L Browne [Nouvelle-Zélande] ; J. V Lawless [Nouvelle-Zélande]

Source :

RBID : ISTEX:002AF1118242302860021FA5AF9A16B53BB1C8DA

Descripteurs français

English descriptors

Abstract

Abstract: Hydrothermal eruptions have occurred in many hot water geothermal fields. This paper concentrates on examples from New Zealand but also mentions others elsewhere, which demonstrate points of particular interest. Numerous small eruptions (maximum focal depths of about 90 m) have occurred in historic times (past 150 years) at Wairakei/Tauhara, Rotorua, Tikitere, Ngatamariki, Mokai and Waimangu. The presence of breccia deposits shows that much larger (with estimated maximum focal depths of about 450 m), prehistoric hydrothermal eruptions have also occurred at Kawerau, Wairakei, Tikitere, Orakeikorako, Te Kopia, Rotokawa and Waiotapu. One of the largest known hydrothermal eruptions in New Zealand took place at Rotokawa 6060±60 years ago; this produced a deposit that extended over an area with a diameter of 4 km, and has a maximum thickness of 11 m. Deposits from hydrothermal eruptions are typically very poorly sorted, matrix-supported, and may contain hydrothermally altered clasts that derive from within the geothermal reservoir. Their lithologies and alteration mineralogies are useful guides to subsurface conditions. Hydrothermal eruptions do not require any direct input of either mass or energy derived directly from a magma and, thus, differ from both phreatic and phreatomagmatic eruptions. Many hydrothermal eruptions in a hot water field start very close to the ground surface and result from the rapid formation of steam due to a sudden pressure reduction. This steam provides the energy necessary to brecciate, lift and eject fragments of the host rocks as a flashing front descends and water nearby in the reservoir boils. A rock brecciation zone accompanies this front, and both precede the descent of the eruption surface. A hydrothermal eruption continues until the steam is produced too slowly to lift the brecciated rocks. There is no genetic difference between the small eruptions induced by exploitation and those which occur as a geothermal system evolves naturally and whose effects may penetrate to much greater depths. Hydrothermal eruptions do not need the presence of either field-wide cap rocks or pressures within a reservoir that exceed that provided by a hydrostatic column of water very close to its boiling temperature.

Url:
DOI: 10.1016/S0012-8252(00)00030-1


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere</title>
<author>
<name sortKey="Browne, P R L" sort="Browne, P R L" uniqKey="Browne P" first="P. R. L" last="Browne">P. R. L Browne</name>
</author>
<author>
<name sortKey="Lawless, J V" sort="Lawless, J V" uniqKey="Lawless J" first="J. V" last="Lawless">J. V Lawless</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:002AF1118242302860021FA5AF9A16B53BB1C8DA</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0012-8252(00)00030-1</idno>
<idno type="url">https://api.istex.fr/document/002AF1118242302860021FA5AF9A16B53BB1C8DA/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000226</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000226</idno>
<idno type="wicri:Area/Istex/Curation">000226</idno>
<idno type="wicri:Area/Istex/Checkpoint">000152</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000152</idno>
<idno type="wicri:doubleKey">0012-8252:2001:Browne P:characteristics:of:hydrothermal</idno>
<idno type="wicri:Area/Main/Merge">000217</idno>
<idno type="wicri:Area/Main/Curation">000213</idno>
<idno type="wicri:Area/Main/Exploration">000213</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere</title>
<author>
<name sortKey="Browne, P R L" sort="Browne, P R L" uniqKey="Browne P" first="P. R. L" last="Browne">P. R. L Browne</name>
<affiliation wicri:level="1">
<country wicri:rule="url">Nouvelle-Zélande</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Geothermal Institute and Geology Department, University of Auckland, Private Bag 92019, 23 Symonds Street, Level 2, Auckland</wicri:regionArea>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lawless, J V" sort="Lawless, J V" uniqKey="Lawless J" first="J. V" last="Lawless">J. V Lawless</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Sinclair Knight Merz Limited, PO Box 9806, Auckland</wicri:regionArea>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Earth-Science Reviews</title>
<title level="j" type="abbrev">EARTH</title>
<idno type="ISSN">0012-8252</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">52</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="299">299</biblScope>
<biblScope unit="page" to="331">331</biblScope>
</imprint>
<idno type="ISSN">0012-8252</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0012-8252</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Allis</term>
<term>Bogie</term>
<term>Breccia</term>
<term>Breccia deposits</term>
<term>Browne</term>
<term>Clast</term>
<term>Crater</term>
<term>Econ</term>
<term>Ejecta</term>
<term>Ejection velocity</term>
<term>Epithermal</term>
<term>Eruption</term>
<term>Eruptive</term>
<term>Eruptive energy</term>
<term>Geol</term>
<term>Geophys</term>
<term>Geotherm</term>
<term>Geothermal</term>
<term>Geothermal development</term>
<term>Geothermal fields</term>
<term>Geothermal reservoir</term>
<term>Geothermal system</term>
<term>Geothermal systems</term>
<term>Geyser</term>
<term>Goff</term>
<term>Ground surface</term>
<term>Hedenquist</term>
<term>Heiken</term>
<term>Host rocks</term>
<term>Hydrological</term>
<term>Hydrology</term>
<term>Hydrothermal</term>
<term>Hydrothermal eruption</term>
<term>Hydrothermal eruption breccia</term>
<term>Hydrothermal eruption breccias</term>
<term>Hydrothermal eruptions</term>
<term>Hydrothermal system</term>
<term>Hydrothermal systems</term>
<term>Inyo craters</term>
<term>Karapiti</term>
<term>Kawerau</term>
<term>Keam</term>
<term>Lahar</term>
<term>Large hydrothermal eruptions</term>
<term>Lawless</term>
<term>Lawlessr</term>
<term>Lithology</term>
<term>Lithostatic</term>
<term>Magmatic</term>
<term>Mastin</term>
<term>Maximum thickness</term>
<term>Nairn</term>
<term>Ngawha</term>
<term>Permeability</term>
<term>Personal communication</term>
<term>Personal observation</term>
<term>Phreatic</term>
<term>Phreatic eruption</term>
<term>Phreatomagmatic</term>
<term>Piezometric surface</term>
<term>Proc</term>
<term>Reservoir rocks</term>
<term>Rotokawa</term>
<term>Rotorua</term>
<term>Sillitoe</term>
<term>Solid material</term>
<term>Steam zone</term>
<term>Stratigraphy</term>
<term>Subsurface</term>
<term>Surv</term>
<term>Tarawera</term>
<term>Tauhara</term>
<term>Taupo</term>
<term>Thermal activity</term>
<term>Tiwi</term>
<term>Volcanol</term>
<term>Waimangu</term>
<term>Waiotapu</term>
<term>Wairakei</term>
<term>Wiradiradja</term>
<term>Wohletz</term>
<term>Yellowstone</term>
<term>Yuhara</term>
<term>Zealand</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Allis</term>
<term>Bogie</term>
<term>Breccia</term>
<term>Breccia deposits</term>
<term>Browne</term>
<term>Clast</term>
<term>Crater</term>
<term>Econ</term>
<term>Ejecta</term>
<term>Ejection velocity</term>
<term>Epithermal</term>
<term>Eruption</term>
<term>Eruptive</term>
<term>Eruptive energy</term>
<term>Geol</term>
<term>Geophys</term>
<term>Geotherm</term>
<term>Geothermal</term>
<term>Geothermal development</term>
<term>Geothermal fields</term>
<term>Geothermal reservoir</term>
<term>Geothermal system</term>
<term>Geothermal systems</term>
<term>Geyser</term>
<term>Goff</term>
<term>Ground surface</term>
<term>Hedenquist</term>
<term>Heiken</term>
<term>Host rocks</term>
<term>Hydrological</term>
<term>Hydrology</term>
<term>Hydrothermal</term>
<term>Hydrothermal eruption</term>
<term>Hydrothermal eruption breccia</term>
<term>Hydrothermal eruption breccias</term>
<term>Hydrothermal eruptions</term>
<term>Hydrothermal system</term>
<term>Hydrothermal systems</term>
<term>Inyo craters</term>
<term>Karapiti</term>
<term>Kawerau</term>
<term>Keam</term>
<term>Lahar</term>
<term>Large hydrothermal eruptions</term>
<term>Lawless</term>
<term>Lawlessr</term>
<term>Lithology</term>
<term>Lithostatic</term>
<term>Magmatic</term>
<term>Mastin</term>
<term>Maximum thickness</term>
<term>Nairn</term>
<term>Ngawha</term>
<term>Permeability</term>
<term>Personal communication</term>
<term>Personal observation</term>
<term>Phreatic</term>
<term>Phreatic eruption</term>
<term>Phreatomagmatic</term>
<term>Piezometric surface</term>
<term>Proc</term>
<term>Reservoir rocks</term>
<term>Rotokawa</term>
<term>Rotorua</term>
<term>Sillitoe</term>
<term>Solid material</term>
<term>Steam zone</term>
<term>Stratigraphy</term>
<term>Subsurface</term>
<term>Surv</term>
<term>Tarawera</term>
<term>Tauhara</term>
<term>Taupo</term>
<term>Thermal activity</term>
<term>Tiwi</term>
<term>Volcanol</term>
<term>Waimangu</term>
<term>Waiotapu</term>
<term>Wairakei</term>
<term>Wiradiradja</term>
<term>Wohletz</term>
<term>Yellowstone</term>
<term>Yuhara</term>
<term>Zealand</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Hydrologie</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Hydrothermal eruptions have occurred in many hot water geothermal fields. This paper concentrates on examples from New Zealand but also mentions others elsewhere, which demonstrate points of particular interest. Numerous small eruptions (maximum focal depths of about 90 m) have occurred in historic times (past 150 years) at Wairakei/Tauhara, Rotorua, Tikitere, Ngatamariki, Mokai and Waimangu. The presence of breccia deposits shows that much larger (with estimated maximum focal depths of about 450 m), prehistoric hydrothermal eruptions have also occurred at Kawerau, Wairakei, Tikitere, Orakeikorako, Te Kopia, Rotokawa and Waiotapu. One of the largest known hydrothermal eruptions in New Zealand took place at Rotokawa 6060±60 years ago; this produced a deposit that extended over an area with a diameter of 4 km, and has a maximum thickness of 11 m. Deposits from hydrothermal eruptions are typically very poorly sorted, matrix-supported, and may contain hydrothermally altered clasts that derive from within the geothermal reservoir. Their lithologies and alteration mineralogies are useful guides to subsurface conditions. Hydrothermal eruptions do not require any direct input of either mass or energy derived directly from a magma and, thus, differ from both phreatic and phreatomagmatic eruptions. Many hydrothermal eruptions in a hot water field start very close to the ground surface and result from the rapid formation of steam due to a sudden pressure reduction. This steam provides the energy necessary to brecciate, lift and eject fragments of the host rocks as a flashing front descends and water nearby in the reservoir boils. A rock brecciation zone accompanies this front, and both precede the descent of the eruption surface. A hydrothermal eruption continues until the steam is produced too slowly to lift the brecciated rocks. There is no genetic difference between the small eruptions induced by exploitation and those which occur as a geothermal system evolves naturally and whose effects may penetrate to much greater depths. Hydrothermal eruptions do not need the presence of either field-wide cap rocks or pressures within a reservoir that exceed that provided by a hydrostatic column of water very close to its boiling temperature.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Nouvelle-Zélande</li>
</country>
</list>
<tree>
<country name="Nouvelle-Zélande">
<noRegion>
<name sortKey="Browne, P R L" sort="Browne, P R L" uniqKey="Browne P" first="P. R. L" last="Browne">P. R. L Browne</name>
</noRegion>
<name sortKey="Browne, P R L" sort="Browne, P R L" uniqKey="Browne P" first="P. R. L" last="Browne">P. R. L Browne</name>
<name sortKey="Lawless, J V" sort="Lawless, J V" uniqKey="Lawless J" first="J. V" last="Lawless">J. V Lawless</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000213 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000213 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:002AF1118242302860021FA5AF9A16B53BB1C8DA
   |texte=   Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021